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Estimation Problems for Rectangular Distributions 
(Or the Taxi Problem Revisited) 

By J.S. Rao, Santa Barbara I ) 

Abstract: The problem of estimating the unknown upper bound 0 on the basis of a sample of size 
n from a uniform or rectangular distribution on [0, 0] has considerable interest. This or the analo- 
gous discrete version is variously known as the "Taxi-problem" or the "German bomb (or Tank) 
problem" and has a long history. The emphasis here is on estimation of 0 through the lengths of 
the observed gaps or spacings which seem natural for this problem. 

1. Introduction 

Let X1 . . . . .  X n be a random sample from a uniform distribution on [0, 0]. Esti- 
mation of  the unknown upper bound 0 is if interest, for instance, in connection with 
estimating the total number of  taxis in a town on the basis of  observed registration 
numbers or in estimating the number o f  enemy bombs (or tanks) on the basis of  
observed serial numbers, providing of course, some obvious assumptions hold. See, for 
instance, Noether [ 1 9 7 1 , 2 - 5  ] for an elementary discussion. A continuous uniform 
distribution will be assumed here, which provides a good approximation to  the results 
in the case of  a discrete uniform on the integers {1, 2 . . . . .  0}. In fact, analogous 
results may be obtained for the latter case. 

When (X1 . . . . .  Xn)  is a random sample from R (0, 0) ,  the rectangular (or uniform) 
distribution on (0, 0), the following results are known and stated for completeness. 
Let 

o <Xln <X2n < . . .  <X n < o (1.1) 

denote the order statistics. The sample maximum Xnn is a complete sufficient statistic 
and has the cumulative distribution function (calf) 

FXn n (x) = (x/O) n, 0 < x  < 0. (1.2) 

From (1.2), it  is seen t ha tE  o (Xnn) = (n/n + 1)0 and hence 

Tn _ n +,l 1 Xn n (1.3) 
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is unbiased for 0. Since this estimator is a function of the complete sufficient statistic, 
it follows from the Rao-Blackwell and Lehmann-Scheff6 theorems that T n is the 
(essentially) unique uniformly minimum variance unbiased estimate (umvue) of 0 
[see, for instance, David, p. 96]. 

Sample spacings or observed gaps come naturally into play in this problem since 
Xnn falls short of 0 by an amount equal to the last gap. Now we introduce some 
basic facts about spacings. Spacings are defined to be the gaps between successive 
observations, i.e. 

Din =)(in --Xi.1,  n, i =  1 , 2 , . . .  ,n (1.4) 

where we put Xon =-- O. Since n is held fixed in all subsequent discussions, we shall 
drop the second subscript n in )(in' Din' etc. to simplify the notation. If one defines 

U i = X  i/O and T i = D  i/O, i = 1  . . . . .  n (1.5) 

then (Ux . . . . .  Un) has the same distribution as a random sample from aR(0,  1) 
distribution while (T1 . . . . .  Tn) correspond to the "uniform spacings." These (T.) 
form an exchangeable set of random variables with a joint Dirichlet distribution. 
Recall that a k-dimensional random vector (Yx . . . . .  Yk) has a Dirichlet distribution 
denoted by D(rl . . . . .  rk; rk+l) if it has the joint density 

P(r l  + . . . + r k +  1) k r.-1 yk)rk+l-1 
f ( Y l  "" 'Yk)  -- k+l , .  (i~=xYi' ) ( I - - y 1 - - . . . - -  (1.6) 

II I ~ (ri) 
i=1 

k Rk" over thes implexSk=O~:  yi>~O, Zl Y i < - l ) i n  S e e W i l k s [ 1 9 6 2 , 1 7 7 - 1 8 2 ] f o r a n  

excellent discussion of the basic facts about this distribution. In particular, 
(TI . . . . .  Tn) has an n-variate Dirichlet D ( 1 , . . . ,  1; 1) with all the parameter values 
unity, i.e., with density 

f ( tl . . . . .  tn) = n! (1.7) 

n 

over the simplex S n = {t: t i >~ 0, 1Z t i ~< 1 ) in R n [see, for instance, David, 79-80].  

From (1.7) it follows that any T i has a D(1 ; n) or Beta (1, n) distribution. From this 
and the fact D i and Ti/O have the same distribution, it can be verified that 

E(Di) = O/(n + 1) 

V(Di) = 02n/(n  + 1)2(n + 2) 

Coy (Di,/9/.) = - -02 / (n  + 1)2(n + 2) for i v~/. 

(1.8) 

It may be noted in passing that Dirichlet random variables have an additive property 
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l 
namely that for l ~< k, ( Y~ Y.) has aD(rl + . . .  + rl; rl+ 1 + . . .  + rk+l )  which is a 

i=1 

Beta distribution. From this, the sampling distributions of  the uniform order statistics 
r n 

Urn i ?  1 T/and the sample range Unn Uln = ~'l T/can be written down immediate- 

ly as the Beta (r; n + 1 -- r) and Beta (n -- 1 ; 2) respectively. 

2. Estimation of 0 

Estimation of parameters through the use of  a few or all of  the order statistics has 
several advantages, principally their simplicity. See, for instance, Mosteller [ 1946] or 
David [1970, chapters 6 and 7]. They are especially useful in situations where trim- 
ming and censoring of the observations is part of  the model and yield drastic reduc- 
tion in labor over the optimal methods which can be sometimes laborious. We suggest 
here estimation through spacings, linear combinations in which are equivalent to linear 
functions of  order statistics. For a discussion of linear estimation through order sta- 
tistics, refer to David [ 1970, p. 102]. As pointed out earlier, the sample maximum falls 
short of 0 by an amount equal to the last gap. Since the gaps are exchangeable, adding 
the length of any of the gaps or the average length of any set of gaps or merely multi- 
plying any gap by (n + 1) yields unbiased estimators of  0. Thus, for r = 1 . . . . .  n 

and 

Tlr = Xnn + D r = 2D r+ ~ D., i~r t 

T 2 r = X n n + - - E D i  = ~D.  1 +  + s  
r i=1 i=1 t r + l  t 

(2.1) 

T3r = (n + 1) D r 

are all unbiased estimators of  0. From (1.8), one can verify 

Var(Tl r  ) = 402n/(n + 1)2(n + 2) 

Var(T2r)=O2(l + l ) / ( n +  l ) (n+  2) (2.2) 

Var(T3r ) = 02n/(n + 2). 

Because of symmetry,  the variance expressions for {Tlr) and {T3r } do not depend 
on the specific D r that is used while the V(T2r ) decreases with r and is a minimum for 
r = n for which 

x(1) 
T2 n = X n  n+ nn= 1 + X n n = T  n (2.3) 

17 
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n 

defined in (1.3). Also recall that if Xn = 1E Xi/n denotes the sample mean, then 

2)~ n = 2  i=l~(n--in + 1) Di (2.4) 

provides yet another unbiased estimator of 0. Thus one may consider a linear combi- 
nation of  spacings 

n 

w =t l hi" ~ (2.5) 

to estimate 0. Unbiasedness of W n implies the condition 

n 

Z bin = (n + I) (2.6) 
1 

which is, of  course, the case with all the estimators in (2.1) and (2.4). It is now natural 
to ask for the best linear unbiased estimate of 0 from among the class (2.5). An ele- 
mentary calculation using (1.8) shows that the variance of  W n is minimized subject to 
(2.6) when bin = ((n + 1/n) for i = 1 . . . . .  n, with the resulting estimator (2.3). The 
equal weights are to be expected on all the spacings from symmetry considerations. 
Since (2.3) is the umvue and is also of  the from (2.5), it is no surprise that it is the best 
linear unbiased estimate. Indeed, equation (1.8) shows that the vector D = 
= (D1 . . . . .  Dn)' follows a linear model with expectation (n + 1) -101 n where i n is 
the column vector with all ones, and covariance matrix Q = [(n + 1) I n - 
- 1 n In] (02/(n + 1) 2 (n + 2)). Using the fact that the inverse of [(n + 1)/n - I n  l'n] 
is (n + 1) -1 [1 n + lnl'n], the formal Gauss-Markov least squares estimator (in its 
slightly generalized version since the covariance matrix,is not diagonal) is given by 

= -2 , Q - I  ] - i  [ ( n + l )  1 n 1 n [ ( n + l )  "1 1 nQD]  

n \ n /  nn 

(2.7) 

which is again the statistic in (2.3) with equal weights bin = (n + 1)/n. 
Alternately one can approach the problem of  ~timating 0 with the goal of  mini- 

mizing the mean square error,(MSE) where MSE(0) = E(O -- 0) 2 and relax the condi- 
tion (2.6) that the estimator 0 be unbiased. If we use equal weights, say b, on all 

n 

{Di}, then the problem is to find the weight b for which the estimator N bD i = bXnn 
has the smallest MSE. It is easy to verify that i= 1 

[ b2n 2bn ] 
MSE(bXnn) =E(bXnn - 0 ) 2  = 02 (n + 2) (n + 1) I- 1 (2.8) 
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which is minimized when b = (n + 2)/(n + 1). Thus the estimator 

(n+2/x 
r4n =\ ~- i l  ] nn (2.9) 

has the smallest MSE. It is interesting to compare this with the other competitors 
namely the umvue T2n in (2.3) and the maximum lieklihood estimator Xnn. Taking 
b to be ((n + 2)/(n + 1)), ((n + 1)/n) and 1 respectively in (2.8), we get 

MSE(T4n ) = OZ/(n + 1) 2 

MSE(T2n ) = 02/n(n + 2) (2.10) 

MSE(Xnn ) = 202/(n + 1) (n + 2) 

from which it follows that with respect to the MSE criterion, T4n given in equation 
(2.9) is uniformly better than the umvue T2n given in (2.3) which in turn is uniformly 
better than the maximum likelihood estimator Xnn. This incidentally is another in- 
stance of a situation where the umvue is not admissible under the quadratic loss func- 
tion. 

Another interesting way to improve the estimators given in (2.1) with respect to 
their MSE's is given by the following procedure: Since the coefficient of variation v 
(i.e., Var(0)/02) is independent of 0 (cf. equation (2.2)), 0* = (1 + v)-a0 yields 
another estimator of 0 with 

MSE(0*) = Var(0*) + [Bias(0*)] 2 

V2  2(V) v q_ = 0  
=02  (1 + v )  2 (1 +v )  2 

which is uniformly smaller than the MSE of the original estimator 0. Thus each of the 
unbiased estimators in (2.1) may be improved with respect to the MSE. This yields 
the estimators 

= (n + 1) 2(n + 2) 
T~lr (n + l)2(n + 2) + 4 n  (Ann +Dr) 

(2.11) 

= r(n+ 1 ) ( n + 2 )  
T~r r(n+ l)(n+ 2)+(r+ l)T2r 

and 

T~ r = n + 2Dr 
2 

which have smaller MSE's than the corresponding unbiased estimators given in (2.1). 
While the MSE of T~r and T~' r does not depend on r, the MSE of  T~2 r does depend 
on r and is a minimum for r = n. It is very interesting to note that the resulting T~n is 
indeed ((n + 2)/(n + 1)) Ann, the estimator with minimum MSE that we obtained in 
(2.9). 
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But the real advantage of  using spacings in estimation of  0 comes in situations of  
censoring where some of  the order statistics at either end or in the middle are missing. 
The best linear unbiased estimate based on the spacings would then be to pu t  equal 
weights on the available or observed gaps. In particular, if  the sample is censored so 
that  one observes only the m-th largest order statistic Xmn (for m ~< n), then the 
following are all unbiased estimators of  0 

T~r = Xmn + ((n + 1 ) - m ) D  r 

r 

T~r=Xm n + n + l - - m  Z D i (2.12) 
r i=1 

T~r = (n + 1)D r 

for r = 1 , . . . ,  m. By an analysis similar to that  used before, it may be shown, that the 
best linear unbiased estimate of  0 is to take 

T~m= ~ ( n + - - - - ~ l l D = n + l  
i=1 m ] i m 

with variance 

Xmn (2.13) 

V(T~m ) = (n - -m  + 1)02/(n + 2)m. (2.14) 

Thus spacings seem to be the natural quantities to consider in the estimation of  0. 
Sarhan/Greenberg [ 1959] discuss the problem of  censoring at both  ends in rectangular 
populations using order statistics. This alternate approach based on spacings yields 
the same results, more effortlessly. 

The author is very grateful to the referee for his many helpful comments and sug- 
gestions. 
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